DocumentCode :
1002868
Title :
A robust H2 filtering approach and its application to equalizer design for communication systems
Author :
Zheng, Feng
Author_Institution :
Dept. of Commun. Syst., Univ. Duisburg-Essen, Duisburg, Germany
Volume :
53
Issue :
8
fYear :
2005
Firstpage :
2735
Lastpage :
2747
Abstract :
In this paper, we aim at developing a robust H2 filtering approach to the design of robust equalizers for communication systems. The contents of this paper mainly include two parts. First, we present a robust H2 filter design method for general multi-input multioutput linear systems with norm-bounded uncertainties in the system matrices based on the linear matrix inequality technique. The characteristics of the equalization problem are taken into account in the filtering model considered here. The advantage of the proposed method is that we can find the optimal solution to robust H2 filtering problem at a reasonable computational burden. Second, we apply the above method to the design of robust equalizers. Two generic examples are studied, one for a single transmit and receive antenna system and another for a multiple transmit and receive antenna system. Both analytical and simulation results show that robust H2 equalizer outperforms the zero-forcing equalizer in both bit-error rate and mean-square errors in the whole simulated range of the signal-to-noise ratio (SNR) when the channel is perturbed from its nominal value, while for the nominal channel, the robust H2 equalizer performs better than the zero-forcing equalizer when the SNR is lower, but it performs worse than the zero-forcing equalizer when the SNR is higher.
Keywords :
MIMO systems; antenna arrays; equalisers; error statistics; filtering theory; mean square error methods; receiving antennas; telecommunication channels; transmitting antennas; BER; H2 filtering approach; antenna array; bit-error rate; communication system; equalizer design; linear matrix inequality technique; mean-square error; multiinput multioutput linear system; receive antenna system; signal-to-noise ratio; transmit antenna system; zero-forcing equalizer; Analytical models; Design methodology; Equalizers; Filtering; Linear matrix inequalities; Linear systems; Nonlinear filters; Receiving antennas; Robustness; Uncertainty; Communication systems; equalizer design; multiple transmit and receive antenna (MIMO) channels; robust;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/TSP.2005.850353
Filename :
1468469
Link To Document :
بازگشت