Author :
Dai, Qionghai ; Chen, Xinjian ; Lin, Chuang
Author_Institution :
Dept. of Autom., Tsinghua Univ., Beijing, China
Abstract :
In this paper, we first propose an efficient algorithm for computing one-dimensional (1-D) discrete cosine transform (DCT) for a signal block, given its two adjacent subblocks in the DCT domain and then introduce several algorithms for the fast computation of multidimensional (m-D) DCT with size N1×N2×...×Nm given 2m subblocks of DCT coefficients with size N1/2×N2/2×...×Nm/2, where Ni(i=1,2,...,m) are powers of 2. Obviously, the row-column method, which employs the most efficient algorithms along each dimension, reduces the computational complexity considerably, compared with the traditional method, which employs only the one-dimensional (1-D) fast DCT and inverse DCT (IDCT) algorithms. However, when m≥2, the traditional method, which employs the most efficient multidimensional DCT/IDCT algorithms, has lower computational complexity than the row-column method. Besides, we propose a direct method by dividing the data into 2m parts for independent fast computation, in which only two steps of r-dimensional (r=1,2,...,m) IDCT and additional multiplications and additions are required. If all the dimensional sizes are the same, the number of multiplications required for the direct method is only (2m-1)/m2m-1 times of that required for the row-column method, and if N≥22m-1, the computational efficiency of the direct method is surely superior to that of the traditional method, which employs the most efficient multidimensional DCT/IDCT algorithms.
Keywords :
computational complexity; discrete cosine transforms; multidimensional signal processing; adjacent subblocks; computational complexity; discrete cosine transform; multidimensional DCT-to-DCT computation; row-column method; signal block; Computational complexity; Computational efficiency; Digital signal processing; Discrete cosine transforms; Helium; Image coding; Image processing; Multidimensional systems; Signal processing algorithms; Transform coding; Compressed domain processing; JPEG and MPEG; discrete cosine transform; fast algorithm;