DocumentCode :
1003996
Title :
An Improved Dual Neural Network for Solving a Class of Quadratic Programming Problems and Its k -Winners-Take-All Application
Author :
Hu, Xiaolin ; Wang, Jun
Volume :
19
Issue :
12
fYear :
2008
Firstpage :
2022
Lastpage :
2031
Abstract :
This paper presents a novel recurrent neural network for solving a class of convex quadratic programming (QP) problems, in which the quadratic term in the objective function is the square of the Euclidean norm of the variable. This special structure leads to a set of simple optimality conditions for the problem, based on which the neural network model is formulated. Compared with existing neural networks for general convex QP, the new model is simpler in structure and easier to implement. The new model can be regarded as an improved version of the dual neural network in the literature. Based on the new model, a simple neural network capable of solving the k -winners-take-all ( k -WTA) problem is formulated. The stability and global convergence of the proposed neural network is proved rigorously and substantiated by simulation results.
Keywords :
Biological neural networks; Biology computing; Computer networks; Convergence; Hopfield neural networks; Information science; Iterative algorithms; Neural networks; Quadratic programming; Recurrent neural networks; $k$-winners-take-all ($k$-WTA); Global asymptotic stability; optimization; quadratic programming (QP); recurrent neural network; Algorithms; Computer Simulation; Decision Making; Decision Support Techniques; Game Theory; Models, Theoretical; Neural Networks (Computer); Pattern Recognition, Automated; Programming, Linear;
fLanguage :
English
Journal_Title :
Neural Networks, IEEE Transactions on
Publisher :
ieee
ISSN :
1045-9227
Type :
jour
DOI :
10.1109/TNN.2008.2003287
Filename :
4685868
Link To Document :
بازگشت