DocumentCode :
1006728
Title :
Root clustering for convex combination of complex polynomials
Author :
Gutman, Shad
Author_Institution :
Dept. of Mech. Eng., Technion-Israel Inst. of Technol., Haifa, Israel
Volume :
37
Issue :
10
fYear :
1992
fDate :
10/1/1992 12:00:00 AM
Firstpage :
1520
Lastpage :
1522
Abstract :
In some important applications, such as the edge-theorem, it is required that a polynomial is α-stable along a parameter segment. Using the critical constraint, the necessary and sufficient conditions for root clustering (α-stability) of convex combinations of complex polynomials are presented. The approach is general and requires that a certain real polynomial has no zeros in the open interval (0,1)
Keywords :
poles and zeros; polynomials; stability criteria; α-stability; complex polynomials; convex polynomial combination; critical constraint; edge-theorem; necessary and sufficient conditions; root clustering; zeros; Automatic control; Kalman filters; MIMO; Matrix decomposition; Minimization methods; Numerical stability; Polynomials; Roundoff errors; Singular value decomposition; Transfer functions;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/9.256373
Filename :
256373
Link To Document :
بازگشت