DocumentCode :
1010548
Title :
Universal entropy estimation via block sorting
Author :
Cai, Haixiao ; Kulkarni, Sanjeev R. ; Verdú, Sergio
Author_Institution :
Electr. Eng. Dept., Princeton Univ., NJ, USA
Volume :
50
Issue :
7
fYear :
2004
fDate :
7/1/2004 12:00:00 AM
Firstpage :
1551
Lastpage :
1561
Abstract :
In this correspondence, we present a new universal entropy estimator for stationary ergodic sources, prove almost sure convergence, and establish an upper bound on the convergence rate for finite-alphabet finite memory sources. The algorithm is motivated by data compression using the Burrows-Wheeler block sorting transform (BWT). By exploiting the property that the BWT output sequence is close to a piecewise stationary memoryless source, we can segment the output sequence and estimate probabilities in each segment. Experimental results show that our algorithm outperforms Lempel-Ziv (LZ) string-matching-based algorithms.
Keywords :
convergence; data compression; entropy; transforms; Burrows-Wheeler block sorting transform; convergence rate; data compression; finite-alphabet finite memory sources; piecewise stationary memoryless source; stationary ergodic sources; tree source; universal entropy estimation; Convergence; DNA; Data compression; Distributed computing; Entropy; Genetic communication; Information theory; Sequences; Sorting; Upper bound;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2004.830771
Filename :
1306553
Link To Document :
بازگشت