DocumentCode :
1011146
Title :
Feedback decoding of fixed-point arithmetic convolutional codes
Author :
Redinbo, G. Robert
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of California, Davis, CA, USA
Volume :
52
Issue :
6
fYear :
2004
fDate :
6/1/2004 12:00:00 AM
Firstpage :
857
Lastpage :
860
Abstract :
Convolutional codes defined over the integers modulo a power of two, an arithmetic structure used for fixed-point arithmetic computations, employ well-known binary convolutional codes as their underlying generators. A recursive decoding technique that exploits binary expansion components of the code symbols uses any binary decoding algorithm valid for the underlying code.
Keywords :
arithmetic codes; binary codes; convolutional codes; decoding; feedback; fixed point arithmetic; arithmetic structure; binary convolutional codes; binary decoding algorithm; binary expansion components; code symbols; feedback decoding; fixed-point arithmetic convolutional codes; integers modulo; Convolutional codes; Decoding; Digital signal processing; Error correction codes; Fault tolerance; Feedback; Fixed-point arithmetic; Power generation; Signal processing algorithms; Vectors;
fLanguage :
English
Journal_Title :
Communications, IEEE Transactions on
Publisher :
ieee
ISSN :
0090-6778
Type :
jour
DOI :
10.1109/TCOMM.2004.829567
Filename :
1306606
Link To Document :
بازگشت