• DocumentCode
    1012932
  • Title

    Estimation of linear parametric models using inverse filter criteria and higher order statistics

  • Author

    Tugnait, Jitendra K.

  • Author_Institution
    Dept. of Electr. Eng., Auburn Univ., AL, USA
  • Volume
    41
  • Issue
    11
  • fYear
    1993
  • fDate
    11/1/1993 12:00:00 AM
  • Firstpage
    3196
  • Lastpage
    3199
  • Abstract
    Considers the problem of estimating the parameters of a stable, scalar ARMA (p, q) signal model (causal or noncausal, minimum phase or mixed phase) driven by an i.i.d. non-Gaussian sequence. The driving noise sequence is not observed. The Wiggins-Donoho (1978, 1991) class of inverse filter criteria for estimation of model parameters are analyzed and extended. These criteria have been considered in the past only for moving average inverse filters. These criteria are extended to general ARMA inverses. Computer simulation examples are presented to illustrate the proposed approaches
  • Keywords
    filtering and prediction theory; parameter estimation; statistical analysis; IID nonGaussian sequence; computer simulation; higher order statistics; inverse filter criteria; linear parametric models; parameter estimation; scalar ARMA signal model; Computer simulation; Delay; Digital filters; Higher order statistics; IIR filters; Nonlinear filters; Parameter estimation; Parametric statistics; Signal processing; Speech processing;
  • fLanguage
    English
  • Journal_Title
    Signal Processing, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1053-587X
  • Type

    jour

  • DOI
    10.1109/78.257255
  • Filename
    257255