DocumentCode :
1013082
Title :
Plane wave pulse propagation through random media
Author :
Hong, Shin Tsy ; Sreenivashiah, I. ; Ishimaru, Akira
Author_Institution :
Univ. of Washington, Seattle, WA, USA
Volume :
25
Issue :
6
fYear :
1977
fDate :
11/1/1977 12:00:00 AM
Firstpage :
822
Lastpage :
828
Abstract :
The theory of plane wave pulse propagation through a random medium, under the forward-scattering assumption is presented. Since pulse propagation characteristics are determined by two-frequency mutual coherence function \\Gamma , a set of normalized curves is given for \\Gamma for different propagation parameters (operating frequency, propagation distance, turbulence strength or density of scatterers, etc.). From the curves one can obtain the coherence bandwidth of a wave for a variety of situations. A received pulse form due to an input delta function is given in a normalized form which is applicable to the whole range of strong fluctuation. The results are applied to optical pulse propagation in dense clouds. It is shown that the high data rate optical pulse communication through clouds may be limited due to a narrow coherence bandwidth of the order of megahertz. A good agreement between the theoretical prediction and the available experimental data has been demonstrated for both the received pulse shapes and the pulse durations of an optical pulse in clouds.
Keywords :
Electromagnetic propagation in random media; Electromagnetic scattering by random media; Electromagnetic transient propagation; Bandwidth; Clouds; Coherence; Fluctuations; Frequency; Optical pulse shaping; Optical pulses; Optical scattering; Random media; Scattering parameters;
fLanguage :
English
Journal_Title :
Antennas and Propagation, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-926X
Type :
jour
DOI :
10.1109/TAP.1977.1141689
Filename :
1141689
Link To Document :
بازگشت