Title :
Lowest density MDS codes over extension alphabets
Author :
Louidor, Erez ; Roth, Ron M.
Author_Institution :
Dept. of Math., British Columbia Univ., Vancouver, BC, Canada
fDate :
7/1/2006 12:00:00 AM
Abstract :
Let F be a finite field and b be a positive integer. A construction is presented of codes over the alphabet Fb with the following three properties: i) the codes are maximum-distance separable (MDS) over Fb, ii) they are linear over F, and iii) they have systematic generator and parity-check matrices over F with the smallest possible number of nonzero entries. Furthermore, for the case F=GF(2), the construction is the longest possible among all codes that satisfy properties i)-iii).
Keywords :
Galois fields; linear codes; matrix algebra; parity check codes; Galois fields; MDS code; maximum-distance separable; parity-check matrix; systematic generator; Computer science; Galois fields; Hamming distance; Hamming weight; Information theory; Length measurement; Linear code; Materials science and technology; Parity check codes; Vectors; Low-density parity-check (LDPC) codes; maximum-distance separable (MDS) codes;
Journal_Title :
Information Theory, IEEE Transactions on
DOI :
10.1109/TIT.2006.876235