Title :
Opto-VLSI-based correlator architecture for multiwavelength optical header recognition
Author :
Aljada, Muhsen ; Alameh, Kamal E. ; Al-Begain, Khalid
Author_Institution :
Centre for MicroPhotonic Syst., Edith Cowan Univ., Joondalup, Australia
fDate :
7/1/2006 12:00:00 AM
Abstract :
A novel optical correlator employing an opto-very-large-scale-integration (VLSI) processor to construct the routing lookup table, in conjunction with an array of fiber Bragg gratings (FBGs) for multiwavelength optical header recognition is demonstrated. The FBG array provides wavelength-dependent time delays, whereas the opto-VLSI processor generates wavelength intensity profiles that match arbitrary bit patterns. The recognition of 4-b optical patterns is experimentally demonstrated at 2.2 Gb/s by showing that the correlator produces an autocorrelation waveform of high peak whenever the input bit pattern matches the wavelength intensity profile.
Keywords :
Bragg gratings; VLSI; delays; optical arrays; optical communication equipment; optical correlation; optical fibre communication; optical fibres; packet switching; 2.2 Gbit/s; fiber Bragg grating array; multiwavelength optical header recognition; optical correlator; opto-very-large-scale-integration; optoVLSI; routing lookup table; time delays; Bragg gratings; Correlators; Delay effects; Fiber gratings; Optical arrays; Pattern matching; Pattern recognition; Routing; Table lookup; Very large scale integration; Optical communication; optical correlators; packet switching; pattern recognition; wavelength-division multiplexing (WDM);
Journal_Title :
Lightwave Technology, Journal of
DOI :
10.1109/JLT.2006.875949