Title :
Maximum likelihood estimation of the parameters of nonminimum phase and noncausal ARMA models
Author :
Rasmussen, Klaus Bolding
Author_Institution :
Electron. Inst., Tech. Univ. Denmark, Lyngby, Denmark
fDate :
1/1/1994 12:00:00 AM
Abstract :
The well-known prediction-error-based maximum likelihood (PEML) method can only handle minimum phase ARMA models. This paper presents a new method known as the back-filtering-based maximum likelihood (BFML) method, which can handle nonminimum phase and noncausal ARMA models. The BFML method is identical to the PEML method in the case of a minimum phase ARMA model, and it turns out that the BFML method incorporates a noncausal ARMA filter with poles outside the unit circle for estimation of the parameters of a causal, nonminimum phase ARMA model
Keywords :
filtering and prediction theory; maximum likelihood estimation; parameter estimation; poles and zeros; signal processing; stochastic processes; time series; back-filtering-based maximum likelihood method; maximum likelihood estimation; minimum phase ARMA models; noncausal ARMA models; nonminimum phase ARMA models; parameter estimation; poles; prediction-error-based maximum likelihood method; stochastic signal model; Autoregressive processes; Equations; Filters; Maximum likelihood estimation; Parameter estimation; Phase estimation; Poles and zeros; Predictive models; Stochastic processes; Vectors;
Journal_Title :
Signal Processing, IEEE Transactions on