DocumentCode :
1017788
Title :
An exact stability analysis test for single-parameter polynomially-dependent linear systems
Author :
Tsiotras, P. ; Bliman, P.-A.
Author_Institution :
Sch. of Aerosp. Eng., Georgia Inst. of Technol., Atlanta, GA, USA
Volume :
51
Issue :
7
fYear :
2006
fDate :
7/1/2006 12:00:00 AM
Firstpage :
1161
Lastpage :
1164
Abstract :
We provide a new condition for testing the stability of a single-parameter, polynomially-dependent linear system of polynomial degree N of the form x˙=A(ρ)x, A(ρ)=Σi=0Nρi Ai (1) over a compact interval. The test is nonconservative and can be cast as a convex feasibility problem in terms of a pair of linear matrix inequalities (LMIs).
Keywords :
distributed parameter systems; linear matrix inequalities; linear systems; polynomials; stability; convex feasibility problem; linear matrix inequalities; single-parameter polynomially-dependent linear systems; stability analysis; Linear matrix inequalities; Linear systems; Lyapunov method; Polynomials; Robust stability; Springs; Stability analysis; Sufficient conditions; System testing; Upper bound; Linear matrix inequalities (LMIs); parameter-dependent systems; robust stability;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.2006.878773
Filename :
1652877
Link To Document :
بازگشت