DocumentCode :
1018233
Title :
An asymptotic expression for the information and capacity of a multidimensional channel with weak input signals
Author :
Prelov, Vyacheslav V. ; Van der Meulen, Edward C.
Author_Institution :
Inst. for Problems of Inf. Transmission, Acad. of Sci., Moscow, Russia
Volume :
39
Issue :
5
fYear :
1993
fDate :
9/1/1993 12:00:00 AM
Firstpage :
1728
Lastpage :
1735
Abstract :
An asymptotic expression is derived for the Shannon mutual information between the input and output signals for a relatively large class of continuous alphabet memoryless channels in the case of weak input signals, when the input space is multidimensional. The authors extend a result of Ibragimov and Khas´minskii (1972) from the one-dimensional to the N-dimensional case. The asymptotic expression obtained relates the Shannon (1948) mutual information function and the Fisher information matrix. This expression is used to derive an asymptotic expression for the capacity of continuous alphabet memoryless channels with vector-valued weak input signals. This asymptotic capacity involves the largest eigenvalue of the Fisher information matrix evaluated at the zero input signal
Keywords :
channel capacity; eigenvalues and eigenfunctions; information theory; matrix algebra; Fisher information matrix; Shannon mutual information function; asymptotic capacity; asymptotic expression; channel capacity; continuous alphabet memoryless channels; eigenvalue; multidimensional channel; multidimensional input space; vector-valued signals; weak input signals; zero input signal; Artificial intelligence; Capacity planning; Channel capacity; Convolution; Entropy; Gaussian noise; Information theory; Memoryless systems; Multidimensional systems; Mutual information;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/18.259667
Filename :
259667
Link To Document :
بازگشت