DocumentCode :
1025
Title :
Angle Estimation for Adaptive Linear Array using PCA-GS-ML Estimator
Author :
Jianxin Wu ; Tong Wang ; Zheng Bao
Author_Institution :
Nat. Lab. of Radar Signal Process., Xidian Univ., Xi´an, China
Volume :
49
Issue :
1
fYear :
2013
fDate :
Jan. 2013
Firstpage :
670
Lastpage :
677
Abstract :
The maximum likelihood (ML) angle estimator can yield optimal angle estimation performance. In the work presented here, a fast algorithm for solving the global optimal solution of the ML angle estimator based on principal component analysis (PCA) and grid search (GS) is developed. Utilizing the low-rank property of the mainbeam steering matrix, the log-likelihood function can be decomposed as a combination of the relevant quantities of basis vectors of the low-rank subspace. Thus, evaluation of the log-likelihood function can be realized in a lower dimensional space. Although GS is also required, the computational complexity can be greatly reduced, and the global optimal solution can be obtained.
Keywords :
array signal processing; computational complexity; maximum likelihood estimation; principal component analysis; vectors; ML angle estimator; PCA-GS-ML estimator; adaptive linear array; computational complexity; global optimal solution; grid search; low-rank property subspace; mainbeam steering matrix; maximum likelihood angle estimator; optimal angle estimation performance; principal component analysis; vector; Approximation methods; Arrays; Computational complexity; Maximum likelihood estimation; Radar tracking; Vectors;
fLanguage :
English
Journal_Title :
Aerospace and Electronic Systems, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9251
Type :
jour
DOI :
10.1109/TAES.2013.6404132
Filename :
6404132
Link To Document :
بازگشت