• DocumentCode
    1025489
  • Title

    Upper Bounds for the Lengths of s-Extremal Codes Over \\BBF 2, \\BBF 4, and \\BBF 2 + u\\BBF 2

  • Author

    Han, Sunghyu ; Kim, Jon-Lark

  • Author_Institution
    Louisville Univ., Louisville
  • Volume
    54
  • Issue
    1
  • fYear
    2008
  • Firstpage
    418
  • Lastpage
    422
  • Abstract
    Our purpose is to find an upper bound for the length of an s-extremal code over F2 (resp. F4) when d equiv 2 (mod 4) (resp. d odd). This question is left open in [A bound for certain s -extremal lattices and codes, Archiv der Mathematik, vol. 89, no. 2, pp. 143-151, 2007] (resp. [s-extremal additive F4 codes, Advances in Mathematics of Communications, vol. 1, no. 1, pp. 111-130,2007]). More precisely, we show that if there is an [n, n/2, d] s-extremal Type I binary self-dual code with d > 6 and d equiv 2 (mod 4), then n < 21d - 82. Similarly we show that if there is an (n, 2", d) s-extremal Type I additive self-dual code over F4 with d > 1 and d, equiv 1 (mod 2), then n < 13d - 26. We also define s-extremal self-dual codes over F2 + uF2 and derive an upper bound for the length of an .s-extremal self-dual code over F2 + uF2 using the information on binary s-extremal codes.
  • Keywords
    binary codes; dual codes; additive F4 code; binary self-dual code; s-extremal code; s-extremal lattices; Binary codes; Galois fields; Lattices; Linear code; Mathematics; Upper bound; $s$-extremal code; Additive $BBF _{4}$ code; code over $BBF _{2} + uBBF _{2}$; self-dual code;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/TIT.2007.911251
  • Filename
    4418477