Title :
A negentropy minimization approach to adaptive equalization for digital communication systems
Author :
Choi, Sooyong ; Lee, Te-Won
Author_Institution :
Univ. of California, USA
fDate :
7/1/2004 12:00:00 AM
Abstract :
In this paper, we introduce and investigate a new adaptive equalization method based on minimizing approximate negentropy of the estimation error for a finite-length equalizer. We consider an approximate negentropy using nonpolynomial expansions of the estimation error as a new performance criterion to improve performance of a linear equalizer based on minimizing minimum mean squared error (MMSE). Negentropy includes higher order statistical information and its minimization provides improved converge, performance and accuracy compared to traditional methods such as MMSE in terms of bit error rate (BER). The proposed negentropy minimization (NEGMIN) equalizer has two kinds of solutions, the MMSE solution and the other one, depending on the ratio of the normalization parameters. The NEGMIN equalizer has best BER performance when the ratio of the normalization parameters is properly adjusted to maximize the output power(variance) of the NEGMIN equalizer. Simulation experiments show that BER performance of the NEGMIN equalizer with the other solution than the MMSE one has similar characteristics to the adaptive minimum bit error rate (AMBER) equalizer. The main advantage of the proposed equalizer is that it needs significantly fewer training symbols than the AMBER equalizer. Furthermore, the proposed equalizer is more robust to nonlinear distortions than the MMSE equalizer.
Keywords :
adaptive equalisers; digital communication; entropy; error statistics; higher order statistics; least mean squares methods; BER; MMSE; adaptive equalization method; adaptive minimum bit error rate; digital communication systems; estimation error; finite-length equalizer; higher order statistical information; minimum mean square error; negentropy minimization approach; nonpolynomial expansion; Adaptive equalizers; Bit error rate; Convergence; Digital communication; Entropy; Estimation error; Minimization methods; Multiaccess communication; Signal processing algorithms; Signal to noise ratio; Algorithms; Artificial Intelligence; Computer Communication Networks; Computer Simulation; Decision Support Techniques; Entropy; Feedback; Information Storage and Retrieval; Information Theory; Models, Statistical; Neural Networks (Computer); Pattern Recognition, Automated; Probability Learning; Signal Processing, Computer-Assisted;
Journal_Title :
Neural Networks, IEEE Transactions on
DOI :
10.1109/TNN.2004.828758