DocumentCode :
1027127
Title :
DC-DC converter: four switches Vpk=Vin/2, capacitive turn-off snubbing, ZV turn-on
Author :
Barbi, Ivo ; Gules, Roger ; Redl, Richard ; Sokal, Nathan O.
Author_Institution :
Power Electron. Inst., Univ. Fed. de Santa Catarina, Florianopolis, Brazil
Volume :
19
Issue :
4
fYear :
2004
fDate :
7/1/2004 12:00:00 AM
Firstpage :
918
Lastpage :
927
Abstract :
A new four-switch full-bridge dc-dc converter topology is especially well-suited for power converters operating from high input voltage: it imposes only half of the input voltage across each of the four switches. The two legs of a full-bridge converter are connected in series with each other, across the dc input source, instead of the usual topology in which each leg is connected across the dc source. The topology reduces turn-off switching losses by providing capacitive snubbing of the turn-off voltage transient, and eliminates capacitor-discharge turn-on losses by providing zero-voltage turn-on. (Switching losses are especially important in converters operating at high input voltage because turn-on losses are proportional to the square of the input voltage, and turn-off losses are proportional to the input voltage). The topology is suitable for resonant and nonresonant converters. It adds one bypass capacitor and one commutating inductor to the minimum-topology full-bridge converter (that inductor is already present in many present-day converters, to provide zero-voltage turn-on, or is associated with one or two capacitors to provide resonant operation), and contains a dc-blocking capacitor in series with the output transformer, primary winding, and some nonresonant converters (that capacitor is already present in resonant power converters). The paper gives a theoretical analysis, and experimental data on a 1.5-kW example that was built and tested: 600-Vdc input, 60-Vdc output at up to 25A, and 50-kHz switching frequency. The measured performance agreed well with the theoretical predictions. The measured efficiency was 93.6% at full load, and was a maximum of 95.15% at 44.8% load.
Keywords :
DC-DC power convertors; bridge circuits; network topology; power capacitors; resonant power convertors; snubbers; switching convertors; transformer windings; 1.5 kW; 25 A; 50 kHz; 60 V; 600 V; 93.6 percent; 95.15 percent; bypass capacitor; capacitive turn-off snubbing; capacitor-discharge turn-on losses; commutating inductor; dc-blocking capacitor; four-switch full-bridge DC-DC converter topology; nonresonant converters; output transformer; power converters; primary windings; resonant converters; series connection; voltage transients; zero-voltage turn-on; Capacitors; DC-DC power converters; Inductors; Leg; Resonance; Switches; Switching converters; Switching loss; Topology; Zero voltage switching; DC–DC converter; full-bridge converter; high input voltage;
fLanguage :
English
Journal_Title :
Power Electronics, IEEE Transactions on
Publisher :
ieee
ISSN :
0885-8993
Type :
jour
DOI :
10.1109/TPEL.2004.830092
Filename :
1310378
Link To Document :
بازگشت