Title :
A Procurement Market Model for Reactive Power Services Considering System Security
Author :
El-Samahy, Ismael ; Bhattacharya, Kankar ; Cañizares, Claudio ; Anjos, Miguel F. ; Pan, Jiuping
Author_Institution :
Univ. of Waterloo, Waterloo
Abstract :
This paper proposes a two-level framework for the operation of a competitive market for reactive power ancillary services. It is argued that the first-level, i.e., reactive power procurement, be on a seasonal basis while the second-level, i.e., reactive power dispatch, be close to real-time operation. To this effect, a reactive power procurement market model is proposed here taking into consideration system security aspects. This procurement procedure is based on a two-step optimization model. First, the marginal benefits of reactive power supply from each provider with respect to system security are obtained by solving an optimal power flow (OPF) that maximizes system loadability subject to transmission security constraints imposed by voltage limits, thermal limits, and stability limits. Second, the selected set of generators is then determined by solving an OPF-based auction to maximize a societal advantage function comprising generators´ offers and their corresponding marginal benefits with respect to system security, considering all transmission system constraints. The proposed procedure yields the selected set of generators and zonal price components, which would form the basis for seasonal contracts between the system operator and the selected reactive power service providers.
Keywords :
optimisation; power generation dispatch; power markets; power system security; pricing; reactive power; optimization model; power generator; power system security; procurement market model; reactive power dispatch; reactive power service; zonal price component; Load flow; Power generation; Power supplies; Power system modeling; Power system security; Procurement; Reactive power; Thermal loading; Thermal stability; Voltage; Ancillary services; electricity markets; pricing; reactive power management; system operation; system security;
Journal_Title :
Power Systems, IEEE Transactions on
DOI :
10.1109/TPWRS.2007.913296