Title :
New minimum distance bounds for certain binary linear codes
Author :
Daskalov, Rumen N. ; Kapralov, Stoyan N.
Author_Institution :
Dept. of Math., Tech. Univ., Gabrovo, Bulgaria
fDate :
11/1/1992 12:00:00 AM
Abstract :
Let an [n, k, d]-code denote a binary linear code of length n, dimension k, and minimum distance at least d. Define d(n, k) as the maximum value of d for which there exists a binary linear [n, k, d]-code. T. Verhoeff (1989) has provided an updated table of bounds on d(n, k) for 1⩽k⩽n⩽127. The authors improve on some of the upper bounds given in that table by proving the nonexistence of codes with certain parameters
Keywords :
error correction codes; binary linear codes; minimum distance; upper bounds; Hamming weight; Linear code; Mathematics; Upper bound; Vectors;
Journal_Title :
Information Theory, IEEE Transactions on