Title :
An efficient algorithm to compute the complete set of discrete Gabor coefficients
Author :
Wang, Liwa ; Chen, Chin-Tu ; Lin, Wei-Chung
Author_Institution :
Dept. of Electr. Eng. & Comput. Sci., Northwestern Univ., Evanston, IL, USA
fDate :
1/1/1994 12:00:00 AM
Abstract :
The discrete Gabor (1946) transform algorithm is introduced that provides an efficient method of calculating the complete set of discrete Gabor coefficients of a finite-duration discrete signal from finite summations and to reconstruct the original signal exactly from the computed expansion coefficients. The similarity of the formulas between the discrete Gabor transform and the discrete Fourier transform enables one to employ the FFT algorithms in the computation. The discrete 1-D Gabor transform algorithm can be extended to 2-D as well
Keywords :
fast Fourier transforms; signal processing; FFT algorithms; discrete Fourier transform; discrete Gabor coefficients; discrete Gabor transform algorithm; expansion coefficients.; finite summations; finite-duration discrete signal; image reconstruction; signal reconstruction; Discrete Fourier transforms; Discrete transforms; Equations; Fourier transforms; Frequency; Image analysis; Image reconstruction; Image texture analysis; Neural networks; Signal analysis;
Journal_Title :
Image Processing, IEEE Transactions on