Title :
Model-order selection: a review of information criterion rules
Author :
Stoica, Petre ; Selén, Yngve
Author_Institution :
Uppsala Univ., Sweden
fDate :
7/1/2004 12:00:00 AM
Abstract :
The parametric (or model-based) methods of signal processing often require not only the estimation of a vector of real-valued parameters but also the selection of one or several integer-valued parameters that are equally important for the specification of a data model. Examples of these integer-valued parameters of the model include the orders of an autoregressive moving average model, the number of sinusoidal components in a sinusoids-in-noise signal, and the number of source signals impinging on a sensor array. In each of these cases, the integer-valued parameters determine the dimension of the parameter vector of the data model, and they must be estimated from the data.
Keywords :
Bayes methods; array signal processing; autoregressive moving average processes; information theory; maximum likelihood estimation; autoregressive moving average model; data model; integer-valued parameters; maximum likelihood parameter estimation; real-valued parameters; sensor array; signal processing; sinusoids-in-noise signal; Covariance matrix; Frequency; Maximum likelihood estimation; Noise level; Parameter estimation; Phase noise; Probability density function; Signal processing; Vehicles;
Journal_Title :
Signal Processing Magazine, IEEE
DOI :
10.1109/MSP.2004.1311138