DocumentCode :
1032298
Title :
Best conditioned parametric identification of transfer function models in the frequency domain
Author :
Rolain, Y. ; Pintelon, R. ; Xu, K.Q. ; Vold, H.
Author_Institution :
Vrije Univ., Brussels, Belgium
Volume :
40
Issue :
11
fYear :
1995
fDate :
11/1/1995 12:00:00 AM
Firstpage :
1954
Lastpage :
1960
Abstract :
It is shown that rational transfer function models based on orthogonal Forsythe polynomials minimize the condition number of the Jacobian of estimators in a least-squares framework. As a result, very high order linear time-invariant systems can be identified. The numerical stability of the estimation of the parameters and their derived quantities (zeros, poles, …) are obtained. Statistical uncertainty bounds are provided. The method is illustrated on a 100th order simulated system and a 120th order measured beam-structure
Keywords :
least squares approximations; numerical stability; parameter estimation; polynomials; transfer functions; best conditioned parametric identification; condition number; frequency domain; least-squares estimators; numerical stability; orthogonal Forsythe polynomials; rational transfer function models; statistical uncertainty bounds; very high order linear time-invariant systems; Cost function; Frequency domain analysis; Frequency estimation; Frequency measurement; Frequency response; Parameter estimation; Poles and zeros; Polynomials; Transfer functions; Virtual manufacturing;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/9.471223
Filename :
471223
Link To Document :
بازگشت