DocumentCode :
1035198
Title :
Robust support vector regression for biophysical variable estimation from remotely sensed images
Author :
Camps-Valls, Gustavo ; Bruzzone, Lorenzo ; Rojo-Alvarez, José L. ; Melgani, Farid
Author_Institution :
Dept. Enginyeria Electrenica, Univ. de Valencia, Burjassot
Volume :
3
Issue :
3
fYear :
2006
fDate :
7/1/2006 12:00:00 AM
Firstpage :
339
Lastpage :
343
Abstract :
This letter introduces the epsiv-Huber loss function in the support vector regression (SVR) formulation for the estimation of biophysical parameters extracted from remotely sensed data. This cost function can handle the different types of noise contained in the dataset. The method is successfully compared to other cost functions in the SVR framework, neural networks and classical bio-optical models for the particular case of the estimation of ocean chlorophyll concentration from satellite remote sensing data. The proposed model provides more accurate, less biased, and improved robust estimation results on the considered case study, especially significant when few in situ measurements are available
Keywords :
oceanographic techniques; oceanography; remote sensing; support vector machines; biophysical variable estimation; cost function; epsi-Huber loss function; ocean chlorophyll concentration; remotely sensed images; satellite remote sensing; support vector regression; Atmospheric modeling; Biosensors; Cost function; Neural networks; Oceans; Parameter estimation; Remote sensing; Robustness; Satellite broadcasting; Support vector machines; Biophysical parameter estimation; Medium Resolution Imaging Spectrometer (MERIS); Sea-viewing Wide Field-of-view Sensor (SeaWiFS)/SeaWiFS Bio-Optical Algorithm Mini-Workshop; ocean chlorophyll concentration; regression; robust cost function; support vector machine (SVM);
fLanguage :
English
Journal_Title :
Geoscience and Remote Sensing Letters, IEEE
Publisher :
ieee
ISSN :
1545-598X
Type :
jour
DOI :
10.1109/LGRS.2006.871748
Filename :
1658001
Link To Document :
بازگشت