DocumentCode :
1035202
Title :
Linear conjugacy of n-dimensional piecewise linear systems
Author :
Feldmann, Ute ; Schwarz, Wolfgang
Author_Institution :
Inst. of Principles of Electr. & Electron. Eng., Tech. Univ. Dresden, Germany
Volume :
41
Issue :
2
fYear :
1994
fDate :
2/1/1994 12:00:00 AM
Firstpage :
190
Lastpage :
192
Abstract :
A proof is given that n-dimensional systems characterized by a piecewise linear continuous vector field with odd symmetry and three linear regions are linearly conjugate if their sets of eigenvalues are identical. For this the eigenvalues in the inner region are assumed to be pairwise distinct
Keywords :
eigenvalues and eigenfunctions; matrix algebra; multidimensional systems; nonlinear dynamical systems; nonlinear systems; piecewise-linear techniques; eigenvalue set; linear conjugacy; n-dimensional piecewise linear systems; nonlinear dynamic systems; odd symmetry; pairwise distinct eigenvalues; piecewise linear continuous vector field; transformation matrix; Circuits; Constraint theory; Design methodology; Differential equations; Eigenvalues and eigenfunctions; Jacobian matrices; Piecewise linear approximation; Piecewise linear techniques; Vectors;
fLanguage :
English
Journal_Title :
Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on
Publisher :
ieee
ISSN :
1057-7122
Type :
jour
DOI :
10.1109/81.269062
Filename :
269062
Link To Document :
بازگشت