DocumentCode :
1044209
Title :
A class of 1-generator quasi-cyclic codes
Author :
Séguin, Gérald E.
Author_Institution :
Dept. of Electr. & Comput. Eng., R. Mil. Coll., Kingston, Ont., Canada
Volume :
50
Issue :
8
fYear :
2004
Firstpage :
1745
Lastpage :
1753
Abstract :
If R = Fq[x]/(xm - 1), S = Fqn[x]/(xm - 1), we define the mapping a_(x) → A(x) =σ0n-1ai(x)αi from Rn onto S, where (α0, αi,..., αn-1) is a basis for Fqn over Fq. This carries the q-ray 1-generator quasicyclic (QC) code R a_(x) onto the code RA(x) in S whose parity-check polynomial (p.c.p.) is defined as the monic polynomial h(x) over Fq of least degree such that h(x)A(x) = 0. In the special case, where gcd(q, m) = 1 and where the prime factorizations of xm 1 over Fq and Fqn are the same we show that there exists a one-to-one correspondence between the q-ary 1-generator quasis-cyclic codes with p.c.p. h(x) and the elements of the factor group J* /I* where J is the ideal in S with p.c.p. h(x) and I the corresponding quantity in R. We then describe an algorithm for generating the elements of J*/I*. Next, we show that if we choose a normal basis for Fqn over Fq, then we can modify the aforementioned algorithm to eliminate a certain number of equivalent codes, thereby rending the algorithm more attractive from a computational point of view. Finally in Section IV, we show how to modify the above algorithm in order to generate all the binary self-dual 1-generator QC codes.
Keywords :
binary codes; cyclic codes; dual codes; 1-generator quasicyclic codes; binary self-dual codes; direct sum decomposition; minimal ideal; monic polynomial; orbit representative; primitive element; Algebra; Councils; Galois fields; Kernel; Military computing; Parity check codes; Polynomials; Cyclic code; QC; code; direct sum decomposition; idempotent; minimal ideal; orbit representative; primitive element; quasi-cyclic;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2004.831861
Filename :
1317118
Link To Document :
بازگشت