Title :
New class of nonlinear systematic error detecting codes
Author :
Karpovsky, Mark ; Taubin, Alexander
Author_Institution :
Dept. of Electr. & Comput. Eng., Boston Univ., MA, USA
Abstract :
A code C detects error e with probability 1-Q(e),ifQ(e) is a fraction of codewords y such that y, y+e∈C. We present a class of optimal nonlinear q-ary systematic (n, qk)-codes (robust codes) minimizing over all (n, qk)-codes the maximum of Q(e) for nonzero e. We also show that any linear (n, qk)-code V with n ≤2k can be modified into a nonlinear (n, qk)-code Cv with simple encoding and decoding procedures, such that the set E={e|Q(e)=1} of undetected errors for Cv is a (k-r)-dimensional subspace of V (|E|=qk-r instead of qk for V). For the remaining qn-qk-r nonzero errors, Q(e)≤q-rfor q≥3 and Q(e)≤ 2-r+1 for q=2.
Keywords :
binary codes; error detection codes; error statistics; minimax techniques; decoding procedure; error detecting codes; error probability; minimax criterion; nonlinear q-ary systematic (n, qk)-codes; Computer errors; Decoding; Design optimization; Jamming; Matched filters; Minimax techniques; Robustness; Testing; Uncertainty; Very large scale integration; Minimax criterion for error detection; nonlinear systematic error detecting codes; robust error detection;
Journal_Title :
Information Theory, IEEE Transactions on
DOI :
10.1109/TIT.2004.831844