DocumentCode :
104735
Title :
Retrieval and Quality Assessment of Wind Velocity Vectors on the Ocean With C-Band SAR
Author :
Carvajal, Gisela K. ; Eriksson, Leif E. B. ; Ulander, Lars M. H.
Author_Institution :
Dept. of Earth & Space Sci., Chalmers Univ. of Technol., Gothenburg, Sweden
Volume :
52
Issue :
5
fYear :
2014
fDate :
May-14
Firstpage :
2519
Lastpage :
2537
Abstract :
Wind vector fields derived from synthetic aperture radar (SAR) sensors show variations at smaller scales than most other globally available surface wind sources. However, few studies have been devoted to the investigation of the accuracy of SAR-derived wind fields at different scales and how they compare with other wind data. In order to investigate these issues, an algorithm for the retrieval of SAR-derived wind vectors has been developed, and a quality assessment between the retrievals and in situ, scatterometer, and numerical weather model (NWM) wind data has been performed. The implemented wind retrieval algorithm detects streak features in the SAR image to estimate wind directions and inverts wind speeds using CMOD-IFR2, CMOD5, or CMOD5.N geophysical model functions. In addition, a regularization method for filtering outliers in the wind direction retrievals is used. Retrievals compared with in situ data indicated better performance at offshore locations for wind speed inversions with CMOD5.N. The bias and standard deviation for offshore regularized wind directions and CMOD5.N speeds are 9° and 25° and -0.1 and 1.4 m/s, respectively. The comparison with the scatterometer and NWM wind data has been performed for retrievals at 5-, 10-, and 20-km resolution. The results indicate a better agreement of the coarser retrievals with the reference data. Nevertheless, mapping of smaller scale features requires wind directions from the SAR image itself.
Keywords :
geophysical signal processing; oceanographic techniques; remote sensing by radar; synthetic aperture radar; wind; C-band SAR; CMOD-IFR2 geophysical model function; CMOD5 geophysical model function; CMOD5.N geophysical model function; NWM wind data; numerical weather model; ocean; scatterometer; synthetic aperture radar; wind quality assessment; wind retrieval; wind velocity vectors; Directional variation; numerical weather model (NWM); ocean surface wind; scatterometer; synthetic aperture radar (SAR); wind direction; wind direction variation with resolution; wind speed;
fLanguage :
English
Journal_Title :
Geoscience and Remote Sensing, IEEE Transactions on
Publisher :
ieee
ISSN :
0196-2892
Type :
jour
DOI :
10.1109/TGRS.2013.2262377
Filename :
6531669
Link To Document :
بازگشت