Title :
Network Coding: A Computational Perspective
Author :
Langberg, Michael ; Sprintson, Alexander ; Bruck, Jehoshua
Author_Institution :
Comput. Sci. Div., Open Univ. of Israel, Raanana
Abstract :
In this work, we study the computational perspective of network coding, focusing on two issues. First, we address the computational complexity of finding a network code for acyclic multicast networks. Second, we address the issue of reducing the amount of computation performed by network nodes. In particular, we consider the problem of finding a network code with the minimum possible number of encoding nodes, i.e. nodes that generate new packets by performing algebraic operations on packets received over incoming links.We present a deterministic algorithm that finds a feasible network code for a multicast network over an underlying graph G(V,E) in time 0(Ekh + Vk2h2 + h4k3(k + h)), where k is the number of destinations and h is the number of packets. Our algorithm improves the best known running time for network code construction. In addition, our algorithm guarantees that the number of encoding nodes in the obtained network code is upper- bounded by 0(h3k2). Next, we address the problem of finding integral and fractional network codes with the minimum number of encoding nodes. We prove that in the majority of settings this problem is NP-hard. However, we show that if h = O(1),k = O(1), and the underlying communication graph is acyclic, then there exists an algorithm that solves this problem in polynomial time.
Keywords :
channel coding; computational complexity; multicast communication; acyclic multicast network; computational complexity; encoding nodes; network coding; network nodes; Computational complexity; Computer networks; Computer science; Encoding; Helium; Multicast algorithms; Network coding; Polynomials; Routing; Algorithms; computational perspective; encoding complexity; fractional network coding; integer network coding; multicast connections;
Journal_Title :
Information Theory, IEEE Transactions on
DOI :
10.1109/TIT.2008.2008135