DocumentCode :
1049855
Title :
Adaptive multistage weighted order statistic filters based on the backpropagation algorithm
Author :
Yin, Lin ; Astola, Jaakko ; Neuvo, Yrjo
Author_Institution :
Dept. of Electr. Eng., Tampere Univ. of Technol., Finland
Volume :
42
Issue :
2
fYear :
1994
fDate :
2/1/1994 12:00:00 AM
Firstpage :
419
Lastpage :
422
Abstract :
As a concise representation of stack filters, multistage weighted-order statistic (MWOS) filters are introduced, which correspond to multistage threshold logic gates or multilayer perceptrons in the binary domain. Two adaptive algorithms are derived for finding optimal MWOS filters under the mean absolute error criterion and the mean square error criterion, respectively. Experimental results from image enhancement are provided to compare the performance of adaptive MWOS filters and adaptive stack filters
Keywords :
adaptive filters; backpropagation; binary sequences; digital filters; feedforward neural nets; image processing; least squares approximations; logic gates; threshold logic; adaptive multistage weighted order statistic filters; adaptive stack filters; backpropagation algorithm; image enhancement; multilayer perceptrons; multistage threshold logic gates; multistage weighted-order statistic filters; optimal MWOS filters; stack filters; Adaptive filters; Backpropagation algorithms; Boolean functions; Filtering algorithms; Logic gates; Multilayer perceptrons; Nonlinear filters; Signal processing algorithms; Statistics; Transversal filters;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/78.275617
Filename :
275617
Link To Document :
بازگشت