DocumentCode :
1055934
Title :
Quantification of recruitment properties of multiple contact cuff electrodes
Author :
Grill, Warren M., Jr. ; Mortimer, J. Thomas
Author_Institution :
Dept. of Biomed. Eng., Case Western Reserve Univ., Cleveland, OH, USA
Volume :
4
Issue :
2
fYear :
1996
fDate :
6/1/1996 12:00:00 AM
Firstpage :
49
Lastpage :
62
Abstract :
Nerve-based stimulating electrodes provide the technology for advancing the function of motor system neural prostheses. The goal of this work was to measure and quantify the recruitment properties of a 12 contact spiral nerve cuff electrode. The cuff was implanted on the cat sciatic nerve trunk, which consists of at least four distinct motor fascicles, and the torque generated at the ankle joint by selective stimulation of the nerve was recorded in nine acute experiments. Comparisons of torques generated with the cuff to torques generated by selective stimulation of individual nerve branches indicated that the cuff allowed selective activation of individual nerve fascicles. Selectivity was dependent on the relative location of the electrode contacts and the nerve fascicles, as well as the size and relative spacing of neighboring fascicles. Selective stimulation of individual nerve fascicles allowed independent and graded control of dorsiflexion and plantarflexion torques in all nine experiments. Field steering currents improved selectivity as reflected by significant increases in the maximum torques that could be generated before spillover to other fascicles, significant increases in the difference between the current amplitude at spillover and the current amplitude at threshold, and significant increases in the slope of the current distance relationship
Keywords :
biocontrol; biomedical equipment; muscle; neurophysiology; patient treatment; prosthetics; 12 contact spiral nerve cuff electrode; acute experiments; ankle joint; cat sciatic nerve trunk; current distance relationship; dorsiflexion torque; field steering currents; motor fascicles; motor system neural prostheses; multiple contact cuff electrodes; nerve-based stimulating electrodes; plantarflexion torque; recruitment properties; selective nerve stimulation; torque; Biomedical electrodes; Electrical stimulation; Hardware; Muscles; Nervous system; Neural prosthesis; Prosthetics; Recruitment; Spirals; Torque control;
fLanguage :
English
Journal_Title :
Rehabilitation Engineering, IEEE Transactions on
Publisher :
ieee
ISSN :
1063-6528
Type :
jour
DOI :
10.1109/86.506402
Filename :
506402
Link To Document :
بازگشت