DocumentCode :
1056090
Title :
Maximum likelihood estimation of the parameters of discrete fractionally differenced Gaussian noise process
Author :
Deriche, Mohamed ; Tewfik, Ahmed H.
Author_Institution :
Dept. of Electr. Eng., Minnesota Univ., Minneapolis, MN, USA
Volume :
41
Issue :
10
fYear :
1993
fDate :
10/1/1993 12:00:00 AM
Firstpage :
2977
Lastpage :
2989
Abstract :
A maximum-likelihood estimation procedure is constructed for estimating the parameters of discrete fractionally differenced Gaussian noise from an observation set of finite size N. The procedure does not involve the computation of any matrix inverse or determinant. It requires N2/2+O(N) operations. The expected value of the loglikelihood function for estimating the parameter d of fractionally differenced Gaussian noise (which corresponds to a parameter of the equivalent continuous-time fractional Brownian motion related to its fractal dimension) is shown to have a unique maximum that occurs at the true value of d. A Cramer-Rao bound on the variance of any unbiased estimate of d obtained from a finite-sized observation set is derived. It is shown experimentally that the maximum-likelihood estimate of d is unbiased and efficient when finite-size data sets are used in the estimation procedure. The proposed procedure is extended to deal with noisy observations of discrete fractionally differenced Gaussian noise
Keywords :
maximum likelihood estimation; parameter estimation; random noise; signal processing; white noise; Brownian motion; Cramer-Rao bound; MLE; discrete fractionally differenced Gaussian noise process; finite-sized observation set; loglikelihood function; maximum-likelihood estimation; parameter estimation; stochastic signals; Brownian motion; Filters; Fractals; Gaussian noise; Linear predictive coding; Maximum likelihood estimation; Motion estimation; Parameter estimation; Signal processing; Speech processing;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/78.277804
Filename :
277804
Link To Document :
بازگشت