DocumentCode :
1057894
Title :
Data driven weighted estimation error benchmarking for estimators and condition monitoring systems
Author :
Grimble, M.J.
Author_Institution :
Ind. Control Centre, Univ. of Strathclyde, Glasgow, UK
Volume :
151
Issue :
4
fYear :
2004
fDate :
7/24/2004 12:00:00 AM
Firstpage :
511
Lastpage :
521
Abstract :
A simple method of benchmarking filters, predictors, smoothers or condition monitoring estimators is presented, which can avoid the need for system model knowledge. A weighted least-squares estimation problem is established, where the solution is shown to involve a term that is independent of the choice of estimator and a term that can be set to zero when using the optimal estimator. The minimum estimation error cost is therefore dependent upon the independent term in the expression and these may be computed using a simple online least-squares algorithm. The level of suboptimality, reflected in the estimation error power is then readily calculable. This enables the quality of estimation to be determined for systems which may not be completely known. If an estimator is used for condition monitoring and fault detection, the benchmark enables the deterioration in the quality of estimation to be determined. It is then possible to judge when fault estimates are sufficiently reliable. Moreover, if the system is nonlinear and fault estimators are defined for different operating conditions, then the benchmark measure can be used online to determine which estimator is best and whether the estimate is optimal in a small signal change sense.
Keywords :
benchmark testing; condition monitoring; control system analysis; fault diagnosis; filtering theory; least squares approximations; condition monitoring system; data driven weighted estimation; estimation error benchmarking; fault detection; weighted least squares estimation;
fLanguage :
English
Journal_Title :
Control Theory and Applications, IEE Proceedings -
Publisher :
iet
ISSN :
1350-2379
Type :
jour
DOI :
10.1049/ip-cta:20040621
Filename :
1322136
Link To Document :
بازگشت