DocumentCode :
1058498
Title :
Phase tracking and restoration of circadian rhythms by model-based optimal control
Author :
Shaik, O.S. ; Sager, S. ; Slaby, O. ; Lebiedz, D.
Author_Institution :
Interdiscipl. Center for Sci. Comput., Univ. of Heidelberg, Heidelberg
Volume :
2
Issue :
1
fYear :
2008
fDate :
1/1/2008 12:00:00 AM
Firstpage :
16
Lastpage :
23
Abstract :
Periodic cellular processes and especially circadian rhythms governed by the oscillating expression of a set of genes based on feedback regulation by their products have become an important issue in biology and medicine. The central circadian clock is an autonomous biochemical oscillator with a period close to 24 h. Research in chronobiology demonstrated that light stimuli can be used to delay or advance the phase of the oscillator, allowing it to influence the underlying physiological processes. Phase shifting and restoration of altered rhythms can generally be viewed as open-loop control problems that may be used for therapeutic purposes in diseases. A circadian oscillator model of the central clock mechanism is studied for the fruit fly Drosophila and show how model-based mixed-integer optimal control allows for the design of chronomodulated pulse-stimuli schemes achieving circadian rhythm restoration in mutants and optimal phase synchronisation between the clock and its environment.
Keywords :
biocontrol; circadian rhythms; open loop systems; optimal control; physiology; Drosophila; autonomous biochemical oscillator; chronobiology; circadian clock; circadian rhythm restoration; feedback regulation; fruit fly; genetics; light stimuli; model-based optimal control; mutants; open-loop control problems; periodic cellular processes; phase shifting; phase tracking; physiological processes; therapeutic purposes;
fLanguage :
English
Journal_Title :
Systems Biology, IET
Publisher :
iet
ISSN :
1751-8849
Type :
jour
DOI :
10.1049/iet-syb:20070016
Filename :
4446651
Link To Document :
بازگشت