DocumentCode :
1059231
Title :
Min-max model predictive control as a quadratic program
Author :
De la Pena, D. Munoz ; Alamo, T. ; Ramirez, D.R. ; Camacho, E.F.
Author_Institution :
Dept. de Ingenieria de Sistemas y Autom.a, Univ. de Sevilla
Volume :
1
Issue :
1
fYear :
2007
fDate :
1/1/2007 12:00:00 AM
Firstpage :
328
Lastpage :
333
Abstract :
The implementation of min-max model predictive control for constrained linear systems with bounded additive uncertainties and quadratic cost functions is dealt with. This type of controller has been shown to be a continuous piecewise affine function of the state vector by geometrical methods. However, no algorithm for computing the explicit solution has been given. Here, it is shown that the min-max optimisation problem can be expressed as a multi-parametric quadratic program, and so, the explicit form of the controller may be determined by standard multi-parametric techniques.
Keywords :
linear systems; minimax techniques; predictive control; quadratic programming; uncertain systems; bounded additive uncertainties; constrained linear systems; continuous piecewise affine function; controller; geometrical methods; min-max model predictive control; min-max optimisation problem; multi-parametric techniques; multiparametric quadratic program; quadratic cost functions; state vector;
fLanguage :
English
Journal_Title :
Control Theory & Applications, IET
Publisher :
iet
ISSN :
1751-8644
Type :
jour
DOI :
10.1049/iet-cta:20060016
Filename :
4079588
Link To Document :
بازگشت