DocumentCode :
1059699
Title :
Can High-Level Concepts Fill the Semantic Gap in Video Retrieval? A Case Study With Broadcast News
Author :
Hauptmann, Alexander ; Yan, Rong ; Lin, Wei-Hao ; Christel, Michael ; Wactlar, Howard
Author_Institution :
Carnegie Mellon Univ., Pittsburgh
Volume :
9
Issue :
5
fYear :
2007
Firstpage :
958
Lastpage :
966
Abstract :
A number of researchers have been building high-level semantic concept detectors such as outdoors, face, building, to help with semantic video retrieval. Our goal is to examine how many concepts would be needed, and how they should be selected and used. Simulating performance of video retrieval under different assumptions of concept detection accuracy, we find that good retrieval can be achieved even when detection accuracy is low, if sufficiently many concepts are combined. We also derive suggestions regarding the types of concepts that would be most helpful for a large concept lexicon. Since our user study finds that people cannot predict which concepts will help their query, we also suggest ways to find the best concepts to use. Ultimately, this paper concludes that "concept-based" video retrieval with fewer than 5000 concepts, detected with a minimal accuracy of 10% mean average precision is likely to provide high accuracy results in broadcast news retrieval.
Keywords :
video retrieval; broadcast news retrieval; concept detection; semantic gap; video retrieval; Concept-based video retrieval; high-level semantic concepts; semantic gap;
fLanguage :
English
Journal_Title :
Multimedia, IEEE Transactions on
Publisher :
ieee
ISSN :
1520-9210
Type :
jour
DOI :
10.1109/TMM.2007.900150
Filename :
4276711
Link To Document :
بازگشت