DocumentCode :
1060000
Title :
Earth-Viewing L-Band Radiometer Sensing of Sea Surface Scattered Celestial Sky Radiation—Part I: General Characteristics
Author :
Tenerelli, Joseph E. ; Reul, Nicolas ; Mouche, Alexis A. ; Chapron, Bertrand
Author_Institution :
Inst. Francais de Recherche et d´´Exploitation de la Mer, Plouzane
Volume :
46
Issue :
3
fYear :
2008
fDate :
3/1/2008 12:00:00 AM
Firstpage :
659
Lastpage :
674
Abstract :
The ldquogalactic glitterrdquo phenomenon at L-band, i.e., the scattering of celestial sky radiation by the rough ocean surface, is examined here as a potential source of error for sea surface salinity (SSS) remote sensing. We begin by considering the transformations that must be applied to downwelling celestial noise in order to compute the eventual impact on the antenna temperature. Then, outside the context of any particular measurement system, we use approximate scattering models along with a model for the equilibrium wind wave spectrum to examine how the scattered signal at the surface might depend on the geophysical conditions and scattering geometry. It is found that, when the specular point lies far away from the galactic plane, where the incident celestial brightness is uniform, sea surface roughness has a negligible impact on the glitter. At such a point, variations in both the orientation of the incidence plane and the wind direction relative to the scattering azimuth have negligible impact. By contrast, when the specular point lies in the vicinity of a localized maximum of brightness, scattering by the roughened ocean surface may reduce the glitter by more than 30%, as compared to a perfectly flat surface, and the glitter amplitude may vary by up to 0.7 K with variations in wind direction and by up to 0.5 K with variations in incidence plane orientation. It is shown that accounting for the roughness impact on celestial noise contamination is of particular concern for the remote sensing of SSS.
Keywords :
atmospheric radiation; oceanography; radiometry; remote sensing; seawater; Earth-viewing L-band radiometer sensing; antenna temperature; celestial sky radiation; downwelling celestial noise; equilibrium wind wave spectrum; galactic glitter; incidence plane orientation; sea surface roughness; sea surface salinity remote sensing; sea surface scattered radiation; wind direction; Radiometry; remote sensing; scattering;
fLanguage :
English
Journal_Title :
Geoscience and Remote Sensing, IEEE Transactions on
Publisher :
ieee
ISSN :
0196-2892
Type :
jour
DOI :
10.1109/TGRS.2007.914803
Filename :
4447249
Link To Document :
بازگشت