DocumentCode :
1060697
Title :
Non-Uniform Bronze Formation in Internal Tin {\\rm Nb}_{3}{\\rm Sn} Wire
Author :
Pong, Ian ; Hopkins, Simon C. ; Glowacki, Bartek A. ; Baldini, Alberto
Author_Institution :
Dept. of Mater. Sci. & Metall., Univ. of Cambridge, Cambridge, UK
Volume :
19
Issue :
3
fYear :
2009
fDate :
6/1/2009 12:00:00 AM
Firstpage :
2593
Lastpage :
2597
Abstract :
The bronze phase transformations during the heat treatment of two multifilamentary internal tin Nb3Sn wires for high field applications made by Luvata are investigated and compared with some model single core wires. Non-uniform bronze profiles, non-uniform Sn distributions in different bundles, and Sn concentration gradient inversion were observed. Their possible formation mechanisms and consequences are discussed in relation to crystal orientation, Ti addition and microstructure. Wire manufacturing processes such as wire drawing impart preferred orientations on the components. The effect of wire texture on Cu-Sn interdiffusion and non-uniform bronze formation was investigated and believed not to be the cause of the non-uniform bronze profiles. 3-dimensional X-ray microtomography is applied to explain the non-uniformity in different bundles by analyzing the porosity formed during reactive diffusion of the low-melting phases. Ti is often added as a ternary addition, either in the Sn core or as Nb-Ti. In the Luvata wires investigated, Ti is present in Sn as the intermetallic compound Ti6Sn5. Its dissolution through a ternary CuSnTi phase, possibly via reaction with CU3S11, has been observed. EDS mapping of the Ti distribution suggests that it is likely to be responsible for the inversion of the Sn concentration gradient. The potential advantage of adding Ti in Sn over using Nb-Ti alloy is discussed. Critical temperature measurements were performed to relate superconducting properties to the phase transformations, composition changes and non-uniform bronze formation.
Keywords :
X-ray chemical analysis; chemical interdiffusion; crystal microstructure; crystal orientation; heat treatment; niobium alloys; porosity; solid-state phase transformations; superconducting materials; superconducting transition temperature; texture; tin alloys; wire drawing; wires; 3-dimensional X-ray microtomography; Nb3Sn; bronze phase transformations; critical temperature; crystal orientation; heat treatment; interdiffusion; microstructure; nonuniform bronze formation; porosity; preferred orientations; reactive diffusion; texture; wire manufacturing processes; ${rm Ti}_{6}{rm Sn}_{5}$ ; Cu-Sn; X-ray tomography; phase transformation; reactive diffusion;
fLanguage :
English
Journal_Title :
Applied Superconductivity, IEEE Transactions on
Publisher :
ieee
ISSN :
1051-8223
Type :
jour
DOI :
10.1109/TASC.2009.2018500
Filename :
5067184
Link To Document :
بازگشت