Title :
Combined parametric-nonparametric identification of Hammerstein systems
Author :
Hasiewicz, Zygmunt ; Mzyk, Grzegorz
Author_Institution :
Inst. of Eng. Cybern., Wroclaw Univ. of Technol., Poland
Abstract :
A novel, parametric-nonparametric, methodology for Hammerstein system identification is proposed. Assuming random input and correlated output noise, the parameters of a nonlinear static characteristic and finite impulse-response system dynamics are estimated separately, each in two stages. First, the inner signal is recovered by a nonparametric regression function estimation method (Stage 1) and then system parameters are solved independently by the least squares (Stage 2). Convergence properties of the scheme are established and rates of convergence are given.
Keywords :
FIR filters; convergence; least squares approximations; nonlinear control systems; nonparametric statistics; parameter estimation; regression analysis; transient response; Hammerstein systems; combined parametric-nonparametric identification; convergence properties; finite impulse-response system dynamics; least squares method; nonlinear static characteristics; nonparametric regression function estimation method; Colored noise; Convergence; Finite impulse response filter; Independent component analysis; Least squares approximation; Nonlinear dynamical systems; Parameter estimation; Polynomials; Signal processing; System identification; Convergence analysis; least squares; nonparametric regression; parameter estimation;
Journal_Title :
Automatic Control, IEEE Transactions on
DOI :
10.1109/TAC.2004.832662