DocumentCode :
1063247
Title :
Purging Musical Instrument Sample Databases Using Automatic Musical Instrument Recognition Methods
Author :
Livshin, Arie ; Rodet, Xavier
Author_Institution :
Inst. de Rech. et Coordination Acoust./Musique (IRCAM), Paris
Volume :
17
Issue :
5
fYear :
2009
fDate :
7/1/2009 12:00:00 AM
Firstpage :
1046
Lastpage :
1051
Abstract :
Compilation of musical instrument sample databases requires careful elimination of badly recorded samples and validation of sample classification into correct categories. This paper introduces algorithms for automatic removal of bad instrument samples using automatic musical instrument recognition and outlier detection techniques. Best evaluation results on a methodically contaminated sound database are achieved using the introduced MCIQR method, which removes 70.1% "bad" samples with 0.9% false-alarm rate and 90.4% with 8.8% false-alarm rate.
Keywords :
acoustic signal processing; database management systems; musical instruments; MCIQR method; automatic musical instrument recognition methods; bad instrument sample removal; musical instrument sample databases; outlier detection techniques; sample classification; Fourier transforms; Instruments; Multimedia databases; Music information retrieval; Pattern classification; Pattern recognition; Scholarships; Synthesizers; Testing; Vectors; Instrument recognition; multimedia databases; music; music information retrieval; pattern classification;
fLanguage :
English
Journal_Title :
Audio, Speech, and Language Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1558-7916
Type :
jour
DOI :
10.1109/TASL.2009.2018439
Filename :
5067422
Link To Document :
بازگشت