DocumentCode :
1066998
Title :
A comparison of frequency-division systems to code-division systems in overloaded channels
Author :
Cho, Joon Ho ; Zhang, Qu ; Gao, Lixin
Author_Institution :
Pohang Univ. of Sci. & Technol. (POSTECH), Pohang
Volume :
56
Issue :
2
fYear :
2008
fDate :
2/1/2008 12:00:00 AM
Firstpage :
289
Lastpage :
298
Abstract :
In this paper, a frequency-division counterpart of joint power control and sequence design problem for code- division multiple-access (CDMA) systems is solved. Total transmit and receive power minimizations are considered for frequency- division multiplexing (FDM) and frequency-division multiple- access (FDMA) communications over overloaded channels. After the definition of channel overloading for CDMA systems is extended to the frequency-division systems, the user admissibility is characterized by a necessary and sufficient condition for the existence of the optimal solution under unequal signal-to- interference-plus-noise ratio constraints at the output of linear receivers and asymmetric data transmission rate constraints among users. The optimal signal power, bandwidth, transmit waveform, and receive waveform are derived for each user as the decision parameters of the optimization problem. It is shown that, if this solution is applied for the uplink users to minimize the total receive power, the optimal FDMA system performs the same as the optimal CDMA system. It is also shown that, if this solution is applied for the downlink users to minimize the total transmit power, the optimal FDM system always outperforms the code-division system that minimizes the extended total squared correlation. Numerical results suggest that the optimal FDM system and the optimal downlink code-division system achieve the same performance when the total transmit power is minimized.
Keywords :
code division multiple access; frequency division multiple access; frequency division multiplexing; telecommunication channels; CDMA; FDM; FDMA communications; code-division multiple-access systems; frequency-division multiple-access communications; frequency-division multiplexing; overloaded channels; signal-to-interference-plus-noise ratio; Bandwidth; Data communication; Downlink; Frequency conversion; Frequency division multiaccess; Frequency division multiplexing; Interference constraints; Multiaccess communication; Power control; Sufficient conditions;
fLanguage :
English
Journal_Title :
Communications, IEEE Transactions on
Publisher :
ieee
ISSN :
0090-6778
Type :
jour
DOI :
10.1109/TCOMM.2008.050304
Filename :
4450799
Link To Document :
بازگشت