DocumentCode :
1068642
Title :
Robust Initial Detection of Landmarks in Film-Screen Mammograms Using Multiple FFDM Atlases
Author :
Iglesias, Juan Eugenio ; Karssemeijer, Nico
Author_Institution :
Dept. of Biomed. Eng., Univ. of California, Los Angeles, CA, USA
Volume :
28
Issue :
11
fYear :
2009
Firstpage :
1815
Lastpage :
1824
Abstract :
Automated analysis of mammograms requires robust methods for pectoralis segmentation and nipple detection. Locating the nipple is especially important in multiview computer aided detection systems, in which findings are matched across images using the nipple-to-finding distance. Segmenting the pectoralis is a key preprocessing step to avoid false positives when detecting masses due to the similarity of the texture of mammographic parenchyma and the pectoral muscle. A multi-atlas algorithm capable of providing very robust initial estimates of the nipple position and pectoral region in digitized mammograms is presented here. Ten full-field digital mammograms, which are easily annotated attributed to their excellent contrast, are robustly registered to the target digitized film-screen mammogram. The annotations are then propagated and fused into a final nipple position and pectoralis segmentation. Compared to other nipple detection methods in the literature, the system proposed here has the advantages that it is more robust and can provide a reliable estimate when the nipple is located outside the image. Our results show that the change in the correlation between nipple-to-finding distances in craniocaudal and mediolateral oblique views is not significant when the detected nipple positions replace the manual annotations. Moreover, the pectoralis segmentation is acceptable and can be used as initialization for a more complex algorithm to optimize the outline locally. A novel aspect of the method is that it is also capable of detecting and segmenting the pectoralis in craniocaudal views.
Keywords :
image registration; image segmentation; mammography; medical image processing; craniocaudal oblique views; film-screen mammograms; full-field digital mammograms; image registration; mediolateral oblique views; multiatlas algorithm; nipple position; nipple-to-finding distances; pectoral region; pectoralis segmentation; Breast cancer; Cancer detection; Change detection algorithms; Data mining; Image segmentation; Mammography; Muscles; Optical films; Optical noise; Robustness; Atlas; detection; nipple; pectoralis; segmentation; Algorithms; Female; Humans; Image Processing, Computer-Assisted; Mammography; Nipples; Normal Distribution; Pectoralis Muscles; ROC Curve;
fLanguage :
English
Journal_Title :
Medical Imaging, IEEE Transactions on
Publisher :
ieee
ISSN :
0278-0062
Type :
jour
DOI :
10.1109/TMI.2009.2025036
Filename :
5071222
Link To Document :
بازگشت