DocumentCode :
1068704
Title :
Illumination Sensing in LED Lighting Systems Based on Frequency-Division Multiplexing
Author :
Yang, Hongming ; Bergmans, JanW M. ; Schenk, Tim C W
Author_Institution :
Dept. of Electr. Eng., Eindhoven Univ. of Technol., Eindhoven, Netherlands
Volume :
57
Issue :
11
fYear :
2009
Firstpage :
4269
Lastpage :
4281
Abstract :
Recently, light emitting diode (LED) based illumination systems have attracted considerable research interest. Such systems normally consist of a large number of LEDs. In order to facilitate the control of such high-complexity system, a novel signal processing application, namely illumination sensing, is thus studied. In this paper, the system concept and research challenges of illumination sensing are presented. Thereafter, we investigate a frequency-division multiplexing (FDM) scheme to distinguish the signals from different LEDs, such that we are able to estimate the illuminances of all the LEDs simultaneously. Moreover, a filter bank sensor structure is proposed to study the key properties of the FDM scheme. Conditions on the design of the filter response are imposed for the ideal case without the existence of any frequency inaccuracy, as well as for the case with frequency inaccuracies. The maximum number of LEDs that can be supported for each case is also derived. In particular, it is shown that, among all the other considered functions, the use of the triangular function is able to give a better tradeoff between the number of LEDs that can be supported and the allowable clock inaccuracies within a practical range. Moreover, through numerical investigations, we show that many tens of LEDs can be supported for the considered system parameters. Remark on the low-cost implementations of the proposed sensor structure is also provided.
Keywords :
frequency division multiplexing; light emitting diodes; lighting; LED lighting system; filter bank sensor structure; frequency-division multiplexing; illumination sensing; sensor structure; triangular function; Filter bank; LED illumination; Nyquist-1 functions; frequency-division multiplexing; illumination sensing;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/TSP.2009.2025091
Filename :
5071228
Link To Document :
بازگشت