• DocumentCode
    1069175
  • Title

    Extended Chandrasekhar recursions

  • Author

    Sayed, Ali H. ; Kailath, Thomas

  • Author_Institution
    Dept. of Electr. & Comput. Eng., California Univ., Santa Barbara, CA, USA
  • Volume
    39
  • Issue
    3
  • fYear
    1994
  • fDate
    3/1/1994 12:00:00 AM
  • Firstpage
    619
  • Lastpage
    623
  • Abstract
    We extend the discrete-time Chandrasekhar recursions for least-squares estimation in constant parameter state-space models to a class of structured time-variant state-space models, special cases of which often arise in adaptive filtering. It can be shown that the much studied exponentially weighted recursive least-squares filtering problem can be reformulated as an estimation problem for a state-space model having this special time-variant structure. Other applications arise in the multichannel and multidimensional adaptive filtering context
  • Keywords
    Kalman filters; adaptive filters; least squares approximations; matrix algebra; parameter estimation; state-space methods; constant parameter state-space models; exponentially weighted recursive least-squares filtering; extended discrete-time Chandrasekhar recursions; least-squares estimation; multichannel adaptive filtering; multidimensional adaptive filtering; structured time-variant state-space models; Adaptive filters; Filtering algorithms; Information systems; Kalman filters; Multidimensional systems; Parameter estimation; Recursive estimation; Resonance light scattering; Riccati equations; State estimation;
  • fLanguage
    English
  • Journal_Title
    Automatic Control, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9286
  • Type

    jour

  • DOI
    10.1109/9.280773
  • Filename
    280773