DocumentCode
1069175
Title
Extended Chandrasekhar recursions
Author
Sayed, Ali H. ; Kailath, Thomas
Author_Institution
Dept. of Electr. & Comput. Eng., California Univ., Santa Barbara, CA, USA
Volume
39
Issue
3
fYear
1994
fDate
3/1/1994 12:00:00 AM
Firstpage
619
Lastpage
623
Abstract
We extend the discrete-time Chandrasekhar recursions for least-squares estimation in constant parameter state-space models to a class of structured time-variant state-space models, special cases of which often arise in adaptive filtering. It can be shown that the much studied exponentially weighted recursive least-squares filtering problem can be reformulated as an estimation problem for a state-space model having this special time-variant structure. Other applications arise in the multichannel and multidimensional adaptive filtering context
Keywords
Kalman filters; adaptive filters; least squares approximations; matrix algebra; parameter estimation; state-space methods; constant parameter state-space models; exponentially weighted recursive least-squares filtering; extended discrete-time Chandrasekhar recursions; least-squares estimation; multichannel adaptive filtering; multidimensional adaptive filtering; structured time-variant state-space models; Adaptive filters; Filtering algorithms; Information systems; Kalman filters; Multidimensional systems; Parameter estimation; Recursive estimation; Resonance light scattering; Riccati equations; State estimation;
fLanguage
English
Journal_Title
Automatic Control, IEEE Transactions on
Publisher
ieee
ISSN
0018-9286
Type
jour
DOI
10.1109/9.280773
Filename
280773
Link To Document