Title :
Polymer plating of 6-(N-Allyl-1,1,2,2tetrahydroperfluorodecyl) amino-1,3,5-trazine-2,4-dithiol monosodium on aluminum in magnetic field and its electrostatic capacity
Author :
Mori, Kunio ; Kang, Zhixin ; Wang, Fang ; Oishi, Yoshiyuki
Author_Institution :
Fac. of Eng., Iwate Univ., Morioka, Japan
fDate :
6/1/2004 12:00:00 AM
Abstract :
Polymer plating of 6-(N-Allyl-1,1,2,2-tetrahydro perfluoro decyl) amino-1,3,5-trazine-2,4-dithiol monosodium (ATP) on aluminum was investigated in the presence and absence of magnetic field and a film capacitor was fabricated using the polymer film deposited on aluminum. Polymer plating of ATP was performed in NaNO2 aqueous solution at 5°C, with film thickness found to increase proportional to the square root of plating time according to the parabolic law, both in the presence and absence of magnetic field. Polymer films were considerably thicker when fabricated in the presence of a magnetic field than that in the absence. The rate of film formation, however, was slightly higher in the presence of a magnetic field. For ATP polymer plating at a current density of 2 A/cm2, the potential applied during film deposition increased with plating time and was considerably higher in the presence of a magnetic field. This shows that the presence of magnetic field leads to the formation of insulating polymer films. From FT-IR results, polymer films were found to be more closely packed and highly ordered in the presence of a magnetic field than in the absence. Fabricating polymer film in the presence of a magnetic field provides higher electrostatic capacitance than in the absence of a magnetic field. Electrostatic capacitance was found to increase with magnetic flux density. Polymer films having dielectric constants of 200 to 450 were obtained suggesting organic ferroelectrics.
Keywords :
aluminium; electrostatics; insulating thin films; magnetic field effects; magnetic flux; organic compounds; permittivity; polymer films; thin film capacitors; 5 C; 6-(N-Allyl-1,1,2,2-tetrahydroperfluorodecyl) amino-1,3,5-trazine-2,4-dithiol monosodium; ATP; Al; FT-IR; NaNO2; aqueous solution; current density; electrostatic capacity; film capacitor; film deposition; film formation; film thickness; insulating polymer films; magnetic field effect; magnetic flux density; organic ferroelectrics; parabolic law; plating time; polymer film deposited; polymer plating; polymer thin film; Aluminum; Capacitance; Capacitors; Current density; Electrostatics; Magnetic fields; Magnetic films; Magnetic flux density; Plastic insulation; Polymer films; Capacitors; fluorinated polymer thin film; magnetic field effect; polymer plating;
Journal_Title :
Applied Superconductivity, IEEE Transactions on
DOI :
10.1109/TASC.2004.830478