Title :
Angular-profile tuning of guided waves in hollow cylinders using a circumferential phased array
Author :
Li, Jian ; Rose, Joseph L.
Author_Institution :
Matec Instrum. Companies Inc., Northboro, MA, USA
Abstract :
Angular-profile tuning of guided waves in hollow cylinders is implemented by using partial loading of the elements in a circumferentially placed phased array. Each partial loading element generates nonaxisymmetric guided waves in a pipe. In earlier work, numerical calculations and experiments have shown that, for nonaxisymmetric guided waves, circumferential distribution of particle displacements (i.e., the angular profile) changes with propagation distance, frequency, and mode. To change the angular profile at a certain distance, either frequency or mode has to be changed for a single partial loading element. This is not the case, however, for a circumferential phased array. The total angular profile of a circumferential array is the superposition of contributions from all elements. If given the knowledge of the angular profile for a single element, the total guided wave angular profile can be controlled and thus focused at any specific circumferential location by a circumferentially placed phased array with adjustable voltage level and phase inputs. This angular profile tuning technique can be used for implementing a circumferential scan with focused, guided wave beams, which leads to the detection of smaller defects as a result of stronger focused beams. Algorithms and specific nondestructive evaluation (NDE) applications for pipe inspection using this technique are discussed.
Keywords :
acoustic waveguides; tuning; ultrasonic arrays; ultrasonic focusing; ultrasonic materials testing; angular profile tuning algorithm; circumferential phased array; defect detection; hollow cylinder; nonaxisymmetric guided wave; nondestructive evaluation; pipe inspection; ultrasonic beam focusing; Costs; Eddy currents; Frequency; Inspection; Magnetic flux; Magnetic materials; Materials testing; Phased arrays; Transducers; Voltage control; Algorithms; Computer Simulation; Computer-Aided Design; Equipment Design; Manufactured Materials; Materials Testing; Models, Theoretical; Sensitivity and Specificity; Transducers; Ultrasonography;
Journal_Title :
Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on
DOI :
10.1109/TUFFC.2002.1159849