DocumentCode :
1072814
Title :
High-Temperature Superconducting Homopolar Inductor Alternator for Marine Applications
Author :
Sivasubramaniam, Kiruba ; Laskaris, Evangelos Trifon ; Shah, Manoj R. ; Bray, James W. ; Garrigan, Neil R.
Author_Institution :
GE Global Res. Center, Niskayuna
Volume :
18
Issue :
1
fYear :
2008
fDate :
3/1/2008 12:00:00 AM
Firstpage :
1
Lastpage :
6
Abstract :
This paper describes a high power density high-temperature superconducting (HTS) electric machine topology that is scalable for marine propulsion and power generation. The design, currently being pursued for airborne applications, is based on homopolar inductor alternator (HIA) technology, which is new within HTS applications. The basic machine design configuration of the HTS HIA is based on a stationary HTS field excitation coil, a solid rotor, and an advanced but conventional stator comprising liquid-cooled air-gap armature winding and an advanced iron core. High power density is obtained by the enhanced magneto-motive force capability of the HTS coil, the increased airgap flux density and armature current loading, and the high tip velocity of the rotor. Preliminary scaled up designs look attractive for three marine applications: propulsion drive, primary ship power generation, and power generation modules. The generators are driven directly by the turbines without the additional complexity of a clutch and gear system. A conceptual design study of a 36-MW 3600-r/min generator, a 4-MW 7000-r/min auxiliary generator, and a 36-MW 120-r/min and 4-MW 132-r/min propulsion motor are summarized.
Keywords :
alternators; high-temperature superconductors; homopolar generators; marine engineering; power inductors; superconducting machines; HTS electric machine topology; airborne applications; high-temperature superconductor; homopolar inductor alternator; marine propulsion; power generation; solid rotor; stationary HTS field excitation coil; Electric propulsion; power density; superconducting (SC) machines;
fLanguage :
English
Journal_Title :
Applied Superconductivity, IEEE Transactions on
Publisher :
ieee
ISSN :
1051-8223
Type :
jour
DOI :
10.1109/TASC.2008.917541
Filename :
4454198
Link To Document :
بازگشت