DocumentCode :
1074519
Title :
Knowledge-Based Segmentation for Tracking Through Deep Turbulence
Author :
Vela, Patricio A. ; Niethammer, Marc ; Pryor, Gallagher D. ; Tannenbaum, Allen R. ; Butts, Robert ; Washburn, Donald
Author_Institution :
Georgia Inst. of Technol., Atlanta
Volume :
16
Issue :
3
fYear :
2008
fDate :
5/1/2008 12:00:00 AM
Firstpage :
469
Lastpage :
474
Abstract :
A combined knowledge-based segmentation/active contour algorithm is used for target tracking through turbulence. The algorithm utilizes Bayesian modeling for segmentation of noisy imagery obtained through longrange, laser imaging of a distance target, and active contours for tip tracking. The algorithm demonstrates improved target tracking performance when compared to weighted centroiding. Open-loop and closed-loop comparisons of the algorithms using simulated imagery validate the hypothesis.
Keywords :
Bayes methods; image processing; target tracking; turbulence; Bayesian modeling; active contour algorithm; deep turbulence; kowledge-based segmentation; noisy imagery; simulated imagery; target tracking; tip tracking; Active contours; Bayesian statistics; geometric flows; tracking; turbulence;
fLanguage :
English
Journal_Title :
Control Systems Technology, IEEE Transactions on
Publisher :
ieee
ISSN :
1063-6536
Type :
jour
DOI :
10.1109/TCST.2007.899723
Filename :
4454452
Link To Document :
بازگشت