DocumentCode :
1075735
Title :
Improvement of Thermal Stability of Ni Germanide Using a Ni–Pt(1%) Alloy on Ge-on-Si Substrate for Nanoscale Ge MOSFETs
Author :
Zhang, Ying-Ying ; Oh, Jungwoo ; Li, Shi-Guang ; Jung, Soon-Yen ; Park, Kee-Young ; Lee, Ga-Won ; Majhi, Prashant ; Tseng, Hsing-Huang ; Jammy, Raj ; Lee, Hi-Deok
Author_Institution :
Dept. of Electron. Eng., Chungnam Nat. Univ., Daejeon, South Korea
Volume :
9
Issue :
2
fYear :
2010
fDate :
3/1/2010 12:00:00 AM
Firstpage :
258
Lastpage :
263
Abstract :
In this paper, thermally stable Ni germanide using a Ni-Pt(1%) alloy and TiN capping layer is proposed for high-performance Ge MOSFETs. The proposed Ni-Pt(1%) alloy structure exhibits low-temperature germanidation with a wide temperature window for rapid thermal processing. Moreover, sheet resistance is stable and the germanide interface shows less agglomeration despite high-temperature postgermanidation anneal up to 550 ??C for 30 min. In addition, the surface of the Ni-Pt(1%) alloy structure is smoother than that of a pure Ni structure both before and after the postgermanidation anneal. Only the NiGe phase and no other phases such as PtxGey and NixPt1-xGey can be observed in X-ray diffraction results, but X-ray photoelectron spectroscopy shows that PtGe is formed during the postgermanidation anneal. The larger Pt atomic radius is believed to inhibit the diffusion of Ni into the Si substrate, thereby improving the thermal stability of the NiGe. The higher melting point of PtGe is also believed to improve thermal stability. Therefore, this proposed Ni-Pt(1%) alloy could be promising for high-mobility Ge MOSFET applications.
Keywords :
MOSFET; X-ray diffraction; X-ray photoelectron spectra; annealing; diffusion; electrical resistivity; elemental semiconductors; germanium; germanium alloys; melting point; nanoelectronics; nickel alloys; nickel compounds; platinum alloys; silicon; thermal stability; Ge-Si; Ge-on-Si substrate; Ni-Pt; NixPt1-xGey; Pt atomic radius; PtxGey; Si; X-ray diffraction; X-ray photoelectron spectroscopy; capping layer; diffusion; germanide interface; high-mobility Ge MOSFET applications; high-temperature postgermanidation anneal; low-temperature germanidation; melting point; nanoscale Ge MOSFET; nickel germanide; rapid thermal processing; sheet resistance; thermal stability; Germanium; MOSFETs; nickel alloys; stability;
fLanguage :
English
Journal_Title :
Nanotechnology, IEEE Transactions on
Publisher :
ieee
ISSN :
1536-125X
Type :
jour
DOI :
10.1109/TNANO.2009.2025129
Filename :
5075627
Link To Document :
بازگشت