• DocumentCode
    107585
  • Title

    Enhanced gene expression of systemically administered plasmid DNA in the liver with therapeutic ultrasound and microbubbles

  • Author

    Raju, B.I. ; Leyvi, E. ; Seip, R. ; Sethuraman, S. ; Luo, X. ; Bird, A. ; Li, S. ; Koeberl, D.

  • Author_Institution
    Philips Res. North America, Briarcliff Manor, NY, USA
  • Volume
    60
  • Issue
    1
  • fYear
    2013
  • fDate
    Jan-13
  • Firstpage
    88
  • Lastpage
    96
  • Abstract
    Ultrasound-mediated delivery (USMD) of novel therapeutic agents in the presence of microbubbles is a potentially safe and effective method for gene therapy offering many desired characteristics, such as low toxicity, potential for repeated treatment, and organ specificity. In this study, we tested the capability of USMD to improve gene expression in mice livers using glycogen storage disease Type Ia as a model disease under systemic administration of naked plasmid DNA. Image-guided therapeutic ultrasound was used in two studies to provide therapeutic ultrasound to mice livers. In the first study, involving wild-type mice, control animals received naked plasmid DNA (pG6Pase 150 μg) via the tail vein, followed by an infusion of microbubbles; the treated animals additionally received therapeutic ultrasound (1 MHz). Following the procedure, the animals were left to recover and were subsequently euthanized after 2 d and liver samples were extracted. Reverse transcription polymerase chain reaction (RT-PCR) assays were performed on the samples to quantify mRNA expression. In addition, Western blot assays of FLAG-tagged glucose-6-phosphatase (G6Pase) were performed to evaluate protein expression. Ultrasound-exposed animals showed a 4-fold increase in G6Pase RNA in the liver, in comparison with control animals. Furthermore, results from Western blot analysis demonstrated a 2-fold increased protein expression in ultrasound-exposed animals after two days ( p <; 0.05). A second pilot study was performed with G6Pase knockout mice, and the animals were monitored for correction of hypoglycemia over a period of 3 weeks before tissue analysis. The RT-PCR assays of samples from these animals demonstrated increased G6Pase RNA in the liver following ultrasound treatment. These results demonstrate that USMD can increase gene expression of systemically injected naked pDNA in the liver and also provide insight into the development of realistic approaches that can be translate- into clinical practice.
  • Keywords
    DNA; biomedical ultrasonics; bubbles; diseases; drug delivery systems; gene therapy; liver; FLAG tagged glucose-6-phosphatase; RT-PCR assays; USMD; Western blot assays; enhanced gene expression; glycogen storage disease Type Ia; hypoglycemia; image guided therapeutic ultrasound; mRNA expression; mice liver; microbubble infusion; microbubbles; model disease; naked plasmid DNA; pG6Pase; reverse transcription polymerase chain reaction; systemically administered plasmid DNA; ultrasound mediated delivery; wild type mice; Gene expression; Liver; Mice; Proteins; RNA; Ultrasonic imaging;
  • fLanguage
    English
  • Journal_Title
    Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0885-3010
  • Type

    jour

  • DOI
    10.1109/TUFFC.2013.2540
  • Filename
    6396489