DocumentCode :
1077816
Title :
Random Projection Trees for Vector Quantization
Author :
Dasgupta, Sanjoy ; Freund, Yoav
Author_Institution :
Dept. of Comput. Sci. & Eng., Univ. of California, La Jolla, CA
Volume :
55
Issue :
7
fYear :
2009
fDate :
7/1/2009 12:00:00 AM
Firstpage :
3229
Lastpage :
3242
Abstract :
A simple and computationally efficient scheme for tree-structured vector quantization is presented. Unlike previous methods, its quantization error depends only on the intrinsic dimension of the data distribution, rather than the apparent dimension of the space in which the data happen to lie.
Keywords :
trees (mathematics); vector quantisation; data distribution; quantization error; random projection trees; tree-structured vector quantization; Algorithm design and analysis; Computer science; Euclidean distance; Machine learning; Manifolds; Partitioning algorithms; Source coding; Statistical analysis; Statistics; Vector quantization; Computational complexity; manifolds; random projection; source coding; vector quantization;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2009.2021326
Filename :
5075899
Link To Document :
بازگشت